### Modified the code of Navier stokes

375
views
0
9 months ago by
Hi everyone..

I am try to modifie the tutorial code of navier stokes . I want to move the cylinder throuhgt the channel in the time. When I run the code I dont get just one graphic, appear a lot of graphics. Someone can help me with this. the code is this:

"""
FEniCS tutorial demo program: Incompressible Navier-Stokes equations
for flow around a cylinder using the Incremental Pressure Correction
Scheme (IPCS).

u' + u . nabla(u)) - div(sigma(u, p)) = f
div(u) = 0
"""

from __future__ import print_function
from fenics import *
from mshr import *
import numpy as np

T = 5.0 # final time
num_steps = 50 # number of time steps
dt = T / num_steps # time step size
mu = 0.001 # dynamic viscosity
rho = 1 # density

# Create mesh
channel = Rectangle(Point(0, 0), Point(2.2, 0.41))
cylinder = Circle(Point(0.2, 0.2), 0.05)
domain = channel - cylinder
mesh = generate_mesh(domain, 64)

# Define function spaces
V = VectorFunctionSpace(mesh, 'P', 2)
Q = FunctionSpace(mesh, 'P', 1)

# Define boundaries
inflow = 'near(x[0], 0)'
outflow = 'near(x[0], 2.2)'
walls = 'near(x[1], 0) || near(x[1], 0.41)'
cylinder = 'on_boundary && x[0]>0.1 && x[0]<0.3 && x[1]>0.1 && x[1]<0.3'

# Define inflow profile
inflow_profile = ('4.0*1.5*x[1]*(0.41 - x[1]) / pow(0.41, 2)', '0')

# Define boundary conditions
bcu_inflow = DirichletBC(V, Expression(inflow_profile, degree=2), inflow)
bcu_walls = DirichletBC(V, Constant((0, 0)), walls)
bcu_cylinder = DirichletBC(V, Constant((0, 0)), cylinder)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_inflow, bcu_walls, bcu_cylinder]
bcp = [bcp_outflow]

# Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# Define functions for solutions at previous and current time steps
u_n = Function(V)
u_ = Function(V)
p_n = Function(Q)
p_ = Function(Q)

# Define expressions used in variational forms
U = 0.5*(u_n + u)
n = FacetNormal(mesh)
f = Constant((0, 0))
k = Constant(dt)
mu = Constant(mu)
rho = Constant(rho)

def epsilon(u):

# Define stress tensor
def sigma(u, p):
return 2*mu*epsilon(u) - p*Identity(len(u))

# Define variational problem for step 1
F1 = rho*dot((u - u_n) / k, v)*dx \
+ inner(sigma(U, p_n), epsilon(v))*dx \
+ dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
- dot(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)

# Define variational problem for step 2

# Define variational problem for step 3
a3 = dot(u, v)*dx
L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx

# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

# Apply boundary conditions to matrices
[bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]

# Create XDMF files for visualization output
xdmffile_u = XDMFFile('navier_stokes_cylinder/velocity.xdmf')
xdmffile_p = XDMFFile('navier_stokes_cylinder/pressure.xdmf')

# Create time series (for use in reaction_system.py)
timeseries_u = TimeSeries('navier_stokes_cylinder/velocity_series')
timeseries_p = TimeSeries('navier_stokes_cylinder/pressure_series')

# Save mesh to file (for use in reaction_system.py)
File('navier_stokes_cylinder/cylinder.xml.gz') << mesh

# Create progress bar
progress = Progress('Time-stepping')
set_log_level(PROGRESS)

# Time-stepping
t = 0
for n in range(num_steps):

# Update current time
t += dt

nv = 0.2 +0.1*t

channel = Rectangle(Point(0, 0), Point(2.2, 0.41))
cylinder = Circle(Point(nv, 0.2), 0.05)
domain = channel - cylinder
mesh = generate_mesh(domain, 64)

# Define function spaces
V = VectorFunctionSpace(mesh, 'P', 2)
Q = FunctionSpace(mesh, 'P', 1)

# Define boundaries
inflow = 'near(x[0], 0)'
outflow = 'near(x[0], 2.2)'
walls = 'near(x[1], 0) || near(x[1], 0.41)'
cylinder = 'on_boundary && x[0]>0.1 && x[0]<2.1 && x[1]>0.1 && x[1]<0.3'

# Define inflow profile
inflow_profile = ('4.0*1.5*x[1]*(0.41 - x[1]) / pow(0.41, 2)', '0')

# Define boundary conditions
bcu_inflow = DirichletBC(V, Expression(inflow_profile, degree=2), inflow)
bcu_walls = DirichletBC(V, Constant((0, 0)), walls)
bcu_cylinder = DirichletBC(V, Constant((0, 0)), cylinder)
bcp_outflow = DirichletBC(Q, Constant(0), outflow)
bcu = [bcu_inflow, bcu_walls, bcu_cylinder]
bcp = [bcp_outflow]

# Define trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
p = TrialFunction(Q)
q = TestFunction(Q)

# Define functions for solutions at previous and current time steps
u_n = Function(V)
u_ = Function(V)
p_n = Function(Q)
p_ = Function(Q)

# Define expressions used in variational forms
U = 0.5*(u_n + u)
n = FacetNormal(mesh)
f = Constant((0, 0))
k = Constant(dt)
mu = Constant(mu)
rho = Constant(rho)

# Define variational problem for step 1
F1 = rho*dot((u - u_n) / k, v)*dx \
+ inner(sigma(U, p_n), epsilon(v))*dx \
+ dot(p_n*n, v)*ds - dot(mu*nabla_grad(U)*n, v)*ds \
- dot(f, v)*dx
a1 = lhs(F1)
L1 = rhs(F1)

# Define variational problem for step 2

# Define variational problem for step 3
a3 = dot(u, v)*dx
L3 = dot(u_, v)*dx - k*dot(nabla_grad(p_ - p_n), v)*dx

# Assemble matrices
A1 = assemble(a1)
A2 = assemble(a2)
A3 = assemble(a3)

# Apply boundary conditions to matrices
[bc.apply(A1) for bc in bcu]
[bc.apply(A2) for bc in bcp]

# Step 1: Tentative velocity step
b1 = assemble(L1)
[bc.apply(b1) for bc in bcu]
solve(A1, u_.vector(), b1, 'bicgstab', 'hypre_amg')

# Step 2: Pressure correction step
b2 = assemble(L2)
[bc.apply(b2) for bc in bcp]
solve(A2, p_.vector(), b2, 'bicgstab', 'hypre_amg')

# Step 3: Velocity correction step
b3 = assemble(L3)
solve(A3, u_.vector(), b3, 'cg', 'sor')

# Plot solution
plot(u_, title='Velocity')
plot(p_, title='Pressure')

# Save solution to file (XDMF/HDF5)
xdmffile_u.write(u_, t)
xdmffile_p.write(p_, t)

# Save nodal values to file
timeseries_u.store(u_.vector(), t)
timeseries_p.store(p_.vector(), t)

# Update previous solution
u_n.assign(u_)
p_n.assign(p_)

# Update progress bar
progress.update(t / T)
print('u max:', u_.vector().array().max())

#Hold plot
interactive()
Community: FEniCS Project
Please format properly your code and try to show us just a minimal (non)working example that reproduces your problem, not the entire code (is hard to read it).
written 9 months ago by Hernán Mella