### assembling weak formulation

272

views

0

I am having issues assembling this weak formulation

\[ \int_{\Omega}\nabla u \cdot \nabla \phi + \beta\int_{\partial\Omega}\nabla_{\tau}u\cdot\nabla_{\tau}\phi = \int_{\partial\Omega}\lambda u \phi \]

I tried

from pylab import *

from fenics import *

import dolfin

from mshr import *

import matplotlib.pyplot as plt

import sympy as sp

beta=0

#Define 3D geometry

sphere1 = Sphere(Point(0, 0, 0), 1.0)

sphere2 = Sphere(Point(0, 0, 0), 0.5)

g3d = sphere1 - sphere2

#Define mesh and function space

mesh = generate_mesh(g3d, 32)

File("sphericalshell.pvd")<<mesh

plot(mesh, interactive=True)

#plot(mesh)

#plt.show()

V = FunctionSpace(mesh,"Lagrange", 1)

n = FacetNormal(mesh)

# Define basis and bilinear form

u = TrialFunction(V)

v = TestFunction(V)

a = dot(grad(u), grad(v))*dx

m = -beta*dot(grad(u)-dot(grad(u),n)*n, grad(v)-dot(grad(v),n)*n)*ds + u*v*ds

but I get this error

\[ \int_{\Omega}\nabla u \cdot \nabla \phi + \beta\int_{\partial\Omega}\nabla_{\tau}u\cdot\nabla_{\tau}\phi = \int_{\partial\Omega}\lambda u \phi \]

I tried

from pylab import *

from fenics import *

import dolfin

from mshr import *

import matplotlib.pyplot as plt

import sympy as sp

beta=0

#Define 3D geometry

sphere1 = Sphere(Point(0, 0, 0), 1.0)

sphere2 = Sphere(Point(0, 0, 0), 0.5)

g3d = sphere1 - sphere2

#Define mesh and function space

mesh = generate_mesh(g3d, 32)

File("sphericalshell.pvd")<<mesh

plot(mesh, interactive=True)

#plot(mesh)

#plt.show()

V = FunctionSpace(mesh,"Lagrange", 1)

n = FacetNormal(mesh)

# Define basis and bilinear form

u = TrialFunction(V)

v = TestFunction(V)

a = dot(grad(u), grad(v))*dx

m = -beta*dot(grad(u)-dot(grad(u),n)*n, grad(v)-dot(grad(v),n)*n)*ds + u*v*ds

but I get this error

**This integral is missing an integration domain.****Traceback (most recent call last):****File "sphericalshell.py", line 33, in <module>****m = -beta*dot(grad(u)-dot(grad(u),n)*n, grad(v)-dot(grad(v),n)*n)*ds + u*v*ds**

is this a problem with the domain, the mesh or the assembly of the weak formulation? I feel the problem is with the assembly but any help is appreciated.
Community: FEniCS Project

### 1 Answer

1

Your beta = 0, therefore, no integration domain.

Here's a fix for you:

Here's a fix for you:

```
from fenics import *
from mshr import *
#Define 3D geometry
sphere1 = Sphere(Point(0, 0, 0), 1.0)
sphere2 = Sphere(Point(0, 0, 0), 0.5)
g3d = sphere1 - sphere2
mesh = generate_mesh(g3d, 10)
def grad_tangent(u):
return grad(u) - dot(grad(u),n)*n
V = FunctionSpace(mesh,"Lagrange", 1)
n = FacetNormal(mesh)
u = TrialFunction(V)
v = TestFunction(V)
beta = Constant(0)
a = dot(grad(u), grad(v))*dx
m = - beta*dot(grad_tangent(u), grad_tangent(v))*ds + u*v*ds
```

Please login to add an answer/comment or follow this question.