### (Deleted) drift-diffusion example in dolfin

29

views

0

I am trying to solve the following coupled system of non-linear Poisson's equations in dolfin:

\[

\begin{gather}

-\nabla \cdot (\epsilon V_t \nabla u ) - \rho = 0\\

\nabla \cdot J_n - R = 0 \\

\nabla \cdot J_p + R = 0 \\

V_t = kT/q \\

n = n_i \exp(u-u_n) \\

p = n_i \exp(u_p-u) \\

\rho = p+d-n \\

J_n = -\mu_n n V_t \nabla u_n \\

J_p = -\mu_p p V_t \nabla u_p \\

R = B(np-n_i^2) + (np-n_i^2)/(\tau_n(p+n_i) + \tau_p(n+n_i))

\end{gather}

\]

\[

\begin{gather}

-\nabla \cdot (\epsilon V_t \nabla u ) - \rho = 0\\

\nabla \cdot J_n - R = 0 \\

\nabla \cdot J_p + R = 0 \\

V_t = kT/q \\

n = n_i \exp(u-u_n) \\

p = n_i \exp(u_p-u) \\

\rho = p+d-n \\

J_n = -\mu_n n V_t \nabla u_n \\

J_p = -\mu_p p V_t \nabla u_p \\

R = B(np-n_i^2) + (np-n_i^2)/(\tau_n(p+n_i) + \tau_p(n+n_i))

\end{gather}

\]

Community: FEniCS Project

Please login to add an answer/comment or follow this question.

The thread is closed. No new answer/comment may be added.