How to solve this question with limit properties


101
views
0
9 months ago by
Justin  

Given  $\lim_{x\to8}f\left(x\right)=-9$limx8ƒ (x)=9 and  $\lim_{x\to8}h\left(x\right)=4$limx8h(x)=4 use the limit properties given in this section to compute the following limits. 

 $\lim_{x\to8}\left[2f\left(x\right)-12h\left(x\right)\right]$limx8[2ƒ (x)12h(x)] 

add commentfollow this post modified 9 months ago by Shannon   • written 9 months ago by Justin  

1 Answer


0
9 months ago by

Here is how I did it.

 $\lim_{x\to8}\left[2f\left(x\right)-12h\left(x\right)\right]=\lim_{x\to8}\left[2f\left(x\right)\right]-\lim_{x\to8}\left[12h\left(x\right)\right]=x\lim_{x\to8}f\left(x\right)-12\lim_{x\to8}h\left(x\right)=2\left(-9\right)-12\left(4\right)=-66$limx8[2ƒ (x)12h(x)]=limx8[2ƒ (x)]limx8[12h(x)]=xlimx8ƒ (x)12limx8h(x)=2(9)12(4)=66 

So the solution is -66

add comment written 9 months ago by Shannon  
Please log in to add an answer/comment or follow this question.

Share this question


Similar posts:
Search »